Step of Proof: p-fun-exp-compose
11,40
postcript
pdf
Inference at
*
2
1
2
I
of proof for Lemma
p-fun-exp-compose
:
1.
T
: Type
2.
n
:
3. 0 <
n
4.
h
,
f
:(
T
(
T
+ Top)).
f
^
n
- 1 o
h
= primrec(
n
- 1;
h
;
i
,
g
.
f
o
g
)
5.
h
:
T
(
T
+ Top)
6.
f
:
T
(
T
+ Top)
f
o primrec(
n
- 1;p-id();
i
,
g
.
f
o
g
) o
h
=
f
o primrec(
n
- 1;
h
;
i
,
g
.
f
o
g
)
latex
by (Fold `p-fun-exp` 0)
CollapseTHEN ((RWO "p-compose-associative<" 0)
CollapseTHEN ((Auto
)
Co
CollapseTHEN ((EqCD)
CollapseTHEN ((Auto
)
CollapseTHEN ((if ((0
C
) = 0) then BackThruSomeHyp else BHyp (0) )
)
)
)
)
)
latex
C
.
Definitions
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
f
^
n
,
P
Q
,
P
Q
,
f
o
g
,
Type
,
T
,
s
=
t
,
x
:
A
B
(
x
)
,
left
+
right
,
Top
,
x
:
A
.
B
(
x
)
,
True
,
t
T
Lemmas
p-compose-associative
,
p-compose
wf
,
squash
wf
,
true
wf
,
top
wf
origin